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Abstract

The current standard approach to scaling trans-
former language models trains each model size
from a different random initialization. As an
alternative, we consider a staged training setup
that begins with a small model and incremen-
tally increases the amount of compute used for
training by applying a “growth operator” to in-
crease the model depth and width. By initializ-
ing each stage with the output of the previous
one, the training process effectively re-uses the
compute from prior stages and becomes more ef-
ficient. Our growth operators each take as in-
put the entire training state (including model pa-
rameters, optimizer state, learning rate schedule,
etc.) and output a new training state from which
training continues. We identify two important
properties of these growth operators, namely that
they preserve both the loss and the “training dy-
namics” after applying the operator. While the
loss-preserving property has been discussed pre-
viously, to the best of our knowledge this work is
the first to identify the importance of preserving
the training dynamics (the rate of decrease of the
loss during training). To find the optimal sched-
ule for stages, we use the scaling laws from (Ka-
plan et al., 2020) to find a precise schedule that
gives the most compute saving by starting a new
stage when training efficiency starts decreasing.
We empirically validate our growth operators and
staged training for autoregressive language mod-
els, showing up to 22% compute savings com-
pared to a strong baseline trained from scratch.
Our code is available at https://github.
com/allenai/staged-training.
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Figure 1: We train a GPT2LARGE (768M parameters) trans-
former language model by first training a model 1/4 the
size (orange line), then increasing the model size by 4x by
applying a growth operator to the entire training state, and
restarting training (green line). The result is a large size
model with comparable loss to one trained from scratch
(blue line) but with reduced compute cost illustrated ini-
tially by the dashed red arrow.

1. Introduction
Language models form the backbone of many modern NLP
systems, and these language models have become progres-
sively larger in recent years. Parameter counts for these
models have grown significantly from ELMo (94 M) (Pe-
ters et al., 2018) to GPT-3 (175 B) (Brown et al., 2020).
While larger models with more learnable parameters per-
form better on a wide range of tasks, the computational cost
to train or even just to evaluate these models has become
prohibitively expensive (Schwartz et al., 2020). In this pa-
per, we demonstrate a method to reduce the compute cost
of training transformer language models (Vaswani et al.,
2017) through a staged training setup that iteratively builds
a large model from a smaller one.

Most prior work on scaling language models initializes
each model size from a random initialization and trains to
convergence (Kaplan et al., 2020). This work illustrated an
intriguing property of model training shown in Figure 1,
namely that smaller models are initially more compute ef-
ficient then larger models, but eventually the larger model
will reach a lower loss. Our central idea is to take advantage
of this property by first training a smaller model in the com-
pute efficient region, applying a growth operator to the en-
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tire training state, and restarting training with a larger sized
model. We introduce two operators to perform this grow-
ing operation along the model depth and width dimensions.
We also identify two important properties of the operators:
first, the loss before growing the model is preserved, and
second, the training dynamics of the grown model match
that of an equivalent model trained from scratch. To main-
tain training dynamics, growth operators must take into the
entire training state, including the optimizer state and learn-
ing rate schedule, in addition to the model weights. As can
be seen in Figure 1 our growth operator is loss-preserving,
and we show in subsequent sections that it also preserves
the training dynamics. These properties also make apply-
ing the growth operators conceptually and algorithmically
simple as they won’t disrupt the training process, and prior
results regarding the model size needed to converge to a
particular loss still hold.

While prior work (Rusu et al., 2016; Wei et al., 2016; Gong
et al., 2019; Liu et al., 2019; Li et al., 2020b; Press et al.,
2020; Gu et al., 2021; Li et al., 2021; Rae et al., 2021; Evci
et al., 2022; Hoffmann et al., 2022) has examined some as-
pects of staged training, our work is the first to address all
aspects including how to grow the entire training state and
set the stage schedule. We begin by describing the details
of our growth operators for the model weights and opti-
mizer state. We then present a principled way to chose the
stage schedule, including how to chose the model sizes and
number of gradient for each stage. Intuitively, we should
start a new stage when the training efficiency decreases and
the rate of loss decrease starts to slow down. To formalize
this intuition, we use the scaling laws from (Kaplan et al.,
2020) to find the optimal schedule that gives the maximum
compute saving. We then show how to approximate the
optimal schedule in the realistic scenario without perfect
knowledge of the scaling laws. We empirically validate
our approach with GPT2 style (Radford et al., 2019) auto-
regressive language model models and demonstrate 5-30
% compute savings measured by validation loss, and zero-
shot perplexity using two benchmark datasets.

2. Definitions and Properties of Growth
Operators

2.1. Definitions

We begin by defining some terms which will be used
throughout the paper. We consider a model y = φ(x, θ)
which takes input x, outputs y, with parameters θ. The
model is trained by minimizing a loss function loss(y, ŷ) ∈
R through a sequence of parameter updates, obtained by
running an optimizer. We will also write loss(φ,D) for the
total loss over a dataset D = {xi,yi} (or just loss(φ)).
The parameter updates for a particular mini-batch are de-
termined by both the mini-batch and the training state,

T = {θ, (m, v), λ(t)}, including the model parameters
θ, optimizer state (m, v, here the first and second mo-
ments of the Adam optimizer), and learning rate schedule
λ(t). Given a training state, we apply a growth operator
G(Torig) = Tgrow that takes the original training state and
outputs a grown training state where the model size has in-
creased, along with a corresponding compatible optimizer
state and learning rate schedule.

2.2. Desired properties

In this section, we define two key properties of growth op-
erators. Building on (Chen et al., 2016) we revisit the loss-
preserving property, and we introduce a more challenging
property, the training-dynamic-preserving property.

2.2.1. PRESERVING LOSS

A function-preserving growth operator is one that takes as
input an original model and returns a grown model that rep-
resents the same function as the original model. If an oper-
ator is function-preserving then it is also loss-preserving1.

Mathematically, we can formulate loss-preserving as

loss(G(φ)(x),y) = loss(φ(x),y) (1)

for any (x,y). A growth operator that is not loss-
preserving wastes time and compute initially until it re-
covers the same performance of the original model. Fig-
ure 2 (and the more detailed Figure 4) show examples of
the proposed width and depth growth operators being loss-
preserving.

2.2.2. PRESERVING TRAINING DYNAMICS

We define the training dynamics as the rate of decrease
of loss relative to the amount of compute, and a training-
dynamics-preserving growth operator is one that allows the
grown model’s loss curve to match that of a target model
(a model of the same size as the grown model but trained
from scratch).

Formally, let φk+1 be the resulting model after applying
the optimizer update to model φk with training state Tk.
Applying the update requires some amount of compute Ck.
The training process produces a loss curve that associates
the loss with the total amount of compute used for training

L(φ,C) = {(Ck, loss(φk,Dk)), k = 1, 2, . . .}

where Ck =
∑
i<=k Ci is the total compute used at step k.

The training dynamics is the compute efficiency of training,

1While a function-preserving operator should be loss-
preserving, strictly speaking, a loss-preserving operator might not
be function-preserving. However, we use both terms interchange-
ably to mean function-preserving.
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(a) Width growth with GPT2LARGE as target
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(b) Depth growth with GPT2LARGE as target

Figure 2: Our growth operators are loss-preserving and training-dynamics preserving. Using (a) as an example,
GPT2LARGE/4 is the original model which is 4x smaller than the target model GPT2LARGE. The model GPT2LARGE/4x4 is the
grown model resulting from growing GPT2LARGE/4 by 4x (doubling model width). The PRE-GROWTH point is highlighted
on the original model GPT2LARGE/4, and the POST-GROWTH point is highlighted on the grown model GPT2LARGE/4x4. The
PRE-GROWTH and POST-GROWTH points have the same loss, showing that the width growth operator is loss-preserving.
To demonstrate that it is also training dynamics-preserving, we overlay the loss curve for the grown model over the target
model and confirm the rate of loss decrease with respect to the number of tokens is the same as the target model trained
from scratch. The x-axis is number of training tokens since random initialization, or from the start of the training stage (for
GPT2LARGE/4x4). A similar result is seen in (b) for the depth growth operator.

the expected decrease in the loss relative to the amount of
compute:

∂

∂C
L(φ,C) = ED[

loss(φk,D)− loss(φk+1,D)
Ck

]

which we denote by ∂L
∂C as an abuse of notation. Practi-

cally it is easy to estimate during training by monitoring
the model’s loss.

We can now define a training-dynamics-preserving growth
operator G at a point on the loss curve with loss LG as one
that preserves the efficiency of training of the grown model
vs. a target model trained from scratch:

∂

∂C
L(G(φorig), C) =

∂

∂C
L(φtarget, C) (2)

where efficiency is evaluated at LG.

Notice that while loss-preserving is a property compar-
ing the original and grown models, training-dynamics-
preserving is a property comparing the grown and target
models. This property makes it possible for the grown
model to “jump” from the loss curve of the smaller model
to the large model and always benefit from faster conver-
gence. A growth operator that does not satisfy this require-
ment could be creating a larger model but with limited ca-
pacity or one that is more difficult to train. Figure 2 (and the
more detailed Figure 4) shows examples of the width and
depth growth operators preserving the training dynamics,
where the grown model perfectly follows the loss curves of
the target model.

While the function-preserving property of a growth oper-
ator can be confirmed based on the implementation itself,
preserving the training dynamics goes beyond just growing
the model size; it must be empirically evaluated. To pre-
serve training dynamics, one must address the whole train-
ing state including the learning rate and the optimizer state,
which are hardly discussed in prior work. We discuss this
further in the next section.

3. Growth Operators
We introduce two growth operators below; the operators
are described generally, though of course the implemen-
tations are model-specific. Our experiments are using the
GPT2 transformer architecture (Radford et al., 2019).

3.1. Width

Our width operator doubles the hidden dimension of the
entire model, and therefore increases the number of pa-
rameters by approximately 4x. This operator applies to all
weights in the network including embeddings, feed forward
layers, bias, and normalization layers, not just the feed for-
ward layers as in prior work (Gu et al., 2021). It grows each
layer in slightly different ways. Layer-normalization layers
and bias terms with weights W ∈ Rd are duplicated:

G(W ) = [W,W ].

where [·, ·] represents concatenation and we have over-
loaded G(·) to apply to a weight matrix instead of the entire
training state. Embedding layers are handled in a similar



Staged Training for Transformer Language Models

manner. For the feed forward weights W ∈ Rnxm, we
design the growth operators as

G(W ) =

(
W Z
Z W

)

where Z is a zero matrix of size similar to W .

In this case, the input before the grown last feed forward
layer that produces the logits is two times wider and the
final logits are two times larger. To keep the whole network
loss-preserving, we divide the grown weights of the last
feed forward layer by a factor of two.

3.2. Depth

Our depth operator doubles the number of layers, and
therefore increases the number of non-embedding param-
eters by 2x. Given a model with layers (φ0, φ1, . . .), the
depth operator adds an identity layer φid after each layer
in the original model, so that the grown model has layers
(φ0, φid, φ1, φid, . . .). The identity layer is a layer where
the input matches the output φid(x) = x.

To construct the identity layer, we start with the formula-
tion of each layer in GPT2 as two sublayers:

x′ = x+ Attention(LN(x)),

y = x′ + FFN(LN(x′))
(3)

where x ∈ Rd is the input, y ∈ Rd is the output. LN, At-
tention, and FFN stands for the layer normalization, multi-
head attention and feed-forward operations. We initialize
both the scale and bias parameters of each LN in the iden-
tity layers to zero, so that LN(x) = 0. We also set the
bias parameters of all linear layers to zero, which combined
with the LN initialization gives Attention(LN(x)) = 0
and FFN(LN(x′)) = 0, and the entire layer reduces to an
identity layer at initialization. Overall, the resulting depth
growth operator is loss-preserving.

3.3. Growth operator’s impact on training state

In practice, to build a growth operator that preserves train-
ing dynamics, we find it important that optimizer state
should be grown in a similar way to the model parameters;
initial experiments indicated that it can take many training
steps to re-estimate the optimizer state, and the initial phase
after growth can be unstable. This is expected because
training dynamics is the rate of loss change ∂L

∂C . To match
the rate of loss change of the target model, the growth op-
erator needs to reproduce the same scale of model updates,
which are controlled by the update rule of the optimizer.
Using the ADAM (Kingma & Ba, 2014) optimizer as an

example2, the update rules are

mt = β1 ∗mt−1 + (1− β1)gt
vt = β2 ∗ vt−1 + (1− β2)g2t

θt+1 = θt −
λ(t)
√
vt + ε

mt

(4)

where g and g2 are the first-order gradients and the
element-wise squared first-order gradients, m is the first
moment (average of g), v is the second moment (average
of g2), β1, β2,∈ [0, 1) are the exponential decay rates for
the moment estimates, ε is a small constant, and t is the
time-step. For the grown model to be updated at a rate
similar to that of the target model, it needs to match its
learning rate λ(t) which we discuss in the next section. It
also needs to produce an optimizer state m, v that’s com-
patible with the gradients of the grown model, g(G(φ)) and
g2(G(φ)). Given that m, v are averages of g, g2, we argue
that m, v should be grown with growth operators Gm, Gv
that satisfy the following properties:3

g(Gm(φ)) = Gm(g(φ)) (5)

g2(Gv(φ)) = Gv(g2(φ)) (6)

The first condition states that the “gradients of the grown
model” should match “growing the gradients of the original
model”. The second condition is similar but for the squared
gradients. To satisfy Eq. 5 and 6, the implementations of
Gm, Gv are slightly different from G. For the width growth
operator, some of the weights need to be scaled by 0.5x or
0.25x to account for the 2x scaling in the forward pass (see
Section 3.1). For the depth growth operator, we copy m
and v for the original model layers and set m and v to zero
for the identity layers.

Along with the loss-preserving property, the training dy-
namics preserving property ensures that the new optimizer
state is compatible with the grown model weights.

Learning rate To match training dynamics, the learn-
ing rate schedule of the grown model must match that of
the target model. The intuition is that our growth op-
erators allow the model state to “jump” from the loss
curve of the original model L(φorig, C) to L(φtarget, C)
at a point with loss LG. Because our growth operator
is loss preserving, the loss LG defines two points on the
loss curves, PRE-GROWTH on L(φorig, C) and GROWTH-
TARGET on L(φtarget, C). To match the training dynam-
ics of L(φtarget, C), we start training the grown model
with a learning rate schedule that matches the target model

2Adam optimizer is just an example. The intuition behind
Eq. 5, 6 can be easily applied to other optimizers.

3Abusing the notation; Eq. 5, 6 are using g, g2 as functions to
compute gradients of a model, not the gradients themselves.
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but starts from GROWTH-TARGET. We discuss finding that
matched GROWTH-TARGET point in Section 4 and 5.

4. Optimal Schedule
Prior work (Gu et al., 2021; Gong et al., 2019) used heuris-
tics to determine the training schedule. In contrast, our goal
is to find the optimal training schedule. An optimal training
schedule is one that, given a target model size, specifies the
optimal sequence of growth operators, intermediate model
sizes, and number of training steps in each stage leading to
the most compute saving. This section will explain our in-
tuition behind our optimal schedule, then explains how to
mathematically find it.

Training to OPTIMALITY We start from the scaling
laws (Kaplan et al., 2020), which showed that the training
of transformer language models is initially efficient with
fast loss reduction, then the compute-efficient regime ends
and the rate of the loss reduction slows down. In addi-
tion, the initial compute-efficient regime is longer for larger
models. These ideas are illustrated in Figure 1where ∂L

∂C
is initially large then it slows down. As shown in Kaplan
et al. (2020) and Li et al. (2020b), the optimal compute al-
location should favor a large model size and stop the train-
ing by the end of the initial compute-efficient regime when
∂L
∂C = τopt, where τopt is some threshold. We call this
training to “Optimality” as opposed to training to “Com-
pletion” or to convergence. We follow this setup because it
is used by most modern large language models, (e.g. GPT-
3(Brown et al., 2020) and Gopher (Rae et al., 2021)) which
is the main use case for staged training. We discuss later
this section how to find the point of OPTIMALITY using
constrained optimization in an idealistic scenario, then later
in Section 5 using a more practical method that estimates
τopt.

Intermediate Stages We next discuss where in training
to grow a model. Intuitively, the optimal schedule is one
where the original small model is trained until its compute-
efficient regime ends, then grown to a larger model to con-
tinue its compute-efficient regime. Figure 1 highlights one
such potential schedule. Notice that there’s a specific point
on the loss curve of the original model that leads to the most
compute saving; growing the model earlier means a wasted
opportunity skipping some of the fast loss reduction stage
of the original model, and growing the model later means
wasting compute by continuing to train after the loss of the
original model begins to plateau.

Schedule which minimizes compute Next, we describe
how to mathematically find this optimal schedule. For that,
we use the scaling laws (Kaplan et al., 2020) which derived
empirical fits for the language model loss L as it relates

to compute C, number of non-embedding parameters N ,
number of gradient update steps S, and batch size B. The
total compute and the loss are given by

C ≈ 6NBS,

L(N,S) =

(
Nc
N

)αN
+

(
Sc
S

)αS (7)

where αN , αS , αB , Nc, Sc, B∗ are all model-specific con-
stants. Thus, finding the the optimal schedule can be for-
mulated as a constrained optimization problem. The output
is the intermediate model sizes, and the amount of compute
for each stage. We discuss the details in Appendix C.

5. Practical Schedule
While the general scaling laws are known, re-estimating
their constants (αN , αS , αB , Nc, Sc, B∗ ) for our setup is
challenging because it requires running a large number of
models of different sizes. Instead of estimating all the con-
stants, we make the observation that we only need to find
three key points:

• PRE-GROWTH ∈ L(φorig, C) at which we grow the
original model

• GROWTH-TARGET ∈ L(φtarget, C) that the model is
grown towards to

• OPTIMALITY ∈ L(φgrown, C) at which we stop train-
ing the grown model.

Next we discuss the mathematical definition of each point,
how to find them, and how to use them in the actual training
procedure.

PRE-GROWTH and OPTIMALITY points We define
PRE-GROWTH and OPTIMALITY using the slope of the loss
curve, as they depend on the rate of change of the loss. For-
mally,

PRE-GROWTH :
∂

∂C
L(φorig, C) = τG

OPTIMALITY :
∂

∂C
L(φgrown, C) = τopt

(8)

where τG and τopt are empirically estimated thresholds.

Importantly, both thresholds are independent of the model
size, and this independence can be derived from Eq. 74. We
also empirically confirmed the model-size independence by
training many models of different sizes; reconfirming re-
sults from Kaplan et al. (2020), the shape of the loss curves
for different sized models were similar, just shifted and
scaled. Additionally, while both thresholds are model-size
independent, τG is a function of the growth operator.

4We also confirmed that the optimal schedules for different
model sizes can all be specified using the same set of thresholds.
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GROWTH-TARGET point The importance of the
GROWTH-TARGET point is that it specifics the learning
rate schedule of the grown model (Section 3.3). We will
specify GROWTH-TARGET using the number of training
steps SGROWTH-TARGET. We found that it can be simply
defined using

SGROWTH-TARGET = ρ× SPRE-GROWTH (9)

where ρ is an empirically estimated constant, and
SPRE-GROWTH is number of training steps at PRE-GROWTH.

As above, and knowing that the loss curves of models of
different sized models are scaled and shifted versions of
each other, we can use Eq. 7 to show that ρ is independent
of the model size, and it is only a function of the growth
operator. We also verified this empirically using different
model sizes.

Estimating τ and ρ Given that equations 8 and 9 are
independent of model sizes, it is enough to estimate the
values of τ and ρ using small models. To estimate them,
we first identify the three necessary points. Specifically,
for a single growth operator, we train an original model
and a target model from scratch then follow the intu-
ition discussed in Section 4 to choose a PRE-GROWTH
point (on L(φorig, C)) and an OPTIMALITY point (on
L(φtarget, C)). The GROWTH-TARGET point is simply
the point on L(φtarget, C)) with the same loss at PRE-
GROWTH. A plot like Figure 1 (and the more detailed Fig-
ure 5) make it easy to manually identify the three points,
and we leave it to future work to automatically find these
points.

Notice that this method required training a target model
from scratch, but in practice we can estimate the constants
once for smaller model sizes and apply them to larger sizes.
Using the identified points, we use equations 8 and 9 to es-
timate values of τG and ρ for each growth operator, and
the value of τopt. The empirical values we estimated are
in Appendix D. Notice that estimating these constants is
much simpler than estimating all the constants of the scal-
ing laws (αN , αS , αB , Nc, Sc, B∗) making this procedure
simpler to apply to a new setup.

Training Procedure Algorithm 1 summarizes the staged
training procedure. Notice that it extends it to the M stage
case. The algorithm starts with the model φ, trains it from
scratch until PRE-GROWTH, grows the model, sets number
of steps for the grown model, and repeats until no more
stages, then continues training to OPTIMALITY.

6. Experiments
In this section we present our main empirical results, fo-
cusing on the amount of compute saving. We show results

Algorithm 1 Staged training for transformer LMs

Input:
φ: original model
λ(t): learning rate schedule
M : number of stages
(Gi, τG,i , ρG,i): (growth op, τ , ρ) for stage i
G1: first stage operator assumed to be identity operator
τopt: last stage’s τ

Begin:
t← 0 // number of training steps
for i = 1 to M do

if i =M then
τ ← τopt // last stage, stop at optimality

else
τ ← τG,i

end if
while ∂

∂CL(φ,C) ≤ τ do
Run training step and update φ
t← t+ 1 // update learning rate using λ(t)

end while
φ← G(φ)
t← t× ρG,i // set learning rate for next stage

end for
return φ

on in-domain data (validation loss) and in the zero-shot
transfer setting. We also compare our work to prior work
in growing transformer language models, establishing that
previous methods fall short in one or more areas.

6.1. Experimental setting

We experiment with GPT2 from (Radford et al., 2019) (in
base and large sizes) using the public C4 (Raffel et al.,
2020) dataset. We follow the learning rate schedule in Ka-
plan et al. (2020) for all model sizes, where the warmup
period is set to 3,000 steps, the batch size is set to 512
and the sequence length is 1,024. For the zero-shot transfer
learning, we experiment on two tasks: Wikitext-103 (Mer-
ity et al., 2017) and LAMBADA (Paperno et al., 2016),
similar to (Li et al., 2021). We report the compute sav-
ing for in-domain validation loss and zero-shot perfor-
mance. We compare our practical schedule in Section 5
with the manual schedule that directly matches the loss of
the PRE-GROWTH model with the target model to select
the GROWTH-TARGET point. We choose and report dif-
ferent thresholds to decide the OPTIMALITY of the training
in each stage.

6.2. Main results

Figure 1 shows the compute saving for growing
GPT2LARGE/4 original model to a target model of
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GPT2LARGE GPT2BASE

5k 10k 14k 3.75k 7k 11k

Baseline (loss) 3.21 3.03 2.97 3.61 3.45 3.38

Compute savings (percent saved vs. baseline)

1 stage manual
2xW 19.3 5.6 4.0 23.8 14.5 13.8
2xD 33.5 7.8 6.3 24.0 23.6 21.8

1 stage practical

2xW 22.5 7.3 5.2 24.3 20.2 19.7
4xW 18.0 5.3 3.8 16.0 8.6 5.5
2xD 37.0 11.0 6.1 24.7 20.4 19.8
4xD 22.5 7.3 5.2 18.8 10.1 6.4
2xDxW 28.8 5.4 3.8 19.0 9.5 6.83

2 stage practical
2x2xW 26.8 10.9 7.8 26.8 17.9 11.4
2x2xD 30.0 14.5 10.4 33.3 21.4 15.9

Table 1: Percentage compute savings for GPT2LARGE and
GPT2BASE on in-domain validation loss on C4, “W” is
width and “D” is depth growth operators. Percent savings is
how much less compute our approach takes than the base-
line to to train a model to equal or better loss than the base-
line. Significant savings can be found using our both width
and depth growth operators, and two growth stages can lead
to even more savings than one growth stage. The derivative
threshold at 5k steps is -0.1, at 10k steps it’s -0.05, and at
14k steps it’s -0.04; thus, 5k is undertrained, 10k is approx-
imately at the optimality threshold of -0.052, and 14k is
trained beyond optimality. Similar for GPT2BASE.

GPT2LARGE (we show the results of other combinations of
growth operators and the results of growing to GPT2BASE

in Appendix A in Figure 5). It is clear that our grown mod-
els are reaching the same loss as the target models but with
less compute. It is important to note that as both models
train longer, the amount of compute saving drops. This il-
lustrates a key design in our schedule where we stop train-
ing of the grown model at OPTIMALITY when the compute-
efficient regime ends. Figure 1 also demonstrates that small
models achieve better loss trade-off when the total compute
is limited, but saturate at higher loss when more compute is
added, highlighting the advantages of our schedule in ap-
plying the growth operator to them before convergence.

Table 1 shows the amount of compute saving of our growth
operators for two different model sizes. The table shows
that our grown model reaches the same performance of the
baseline (target model) trained from scratch while having
considerable compute saving ranging from 30% to 5% for
different thresholds. The first row in Table 1 denotes the
number of steps we used to train the baseline model. Given
that our growth operator is loss-preserving and training-
dynamic preserving, we can always reach the same loss of
the target model with less compute and the compute saving
becomes larger when we decide to stop the target model
earlier. Also, given the same growth ratio (4x growth), the
depth growth operator is preferable versus width concern-
ing the compute saving.

We also evaluate our pretrained models on other language
modeling tasks in the zero-shot setting to verify that the
grown models maintain their transfer learning capabilities.
Table 2 shows results on Wikitext-103 and LAMBADA. It
can be seen that using our practical schedule, we achieve
comparable and sometimes better performance versus us-
ing the manual schedule for both in-domain loss and zero-
shot transfer learning. In some cases we have negative
compute saving with the width operator or when combing
the width and depth operator on zero-shot transfer learn-
ing tasks early in training (indicating the grown model
used more compute to get to the same (or better) perfor-
mance), but the compute saving is always positive when
training for longer. We assume that this is due to instabil-
ities in optimization right after applying the growth opera-
tor. When the training proceeds, the zero-shot performance
will shortly recover and the grown models will have better
positive compute saving at OPTIMALITY for the two model
sizes. It is also less of an issue for the base model size as
GROWTH-TARGET. Moreover, the depth growth operator
leads to better performance compute saving trade-off com-
pared to the width operator under the same growth ratio.
Finally, we show that applying the growth operator twice
(in two stages) lead to the best-performing compute sav-
ing and performance. See Figure 7 for detailed evaluation
plots.

6.3. Ablations and prior work comparison

We experiment with prior work and conduct ablation stud-
ies for our method. We show that prior works fall short
in one or more of the key components of our proposed
method; preserving loss, preserving training dynamics, or
following an optimal schedule.

Prior work comparison. We evaluate against two
growth operators from previous work (Gu et al., 2021;
Gong et al., 2019); one uses weight sharing to make a feed-
forward network module wider, and the other makes an en-
tire network deeper. Given the nature of these growth op-
erators, the grown models do not represent the same func-
tion as the original model; as shown in Figure 3, neither
retain the same loss as the original model, and thus they
do not satisfy our loss-preserving property. This directly
translates to wasted compute; our width grown saves 13.8%
while that of Gu et al. (2021) wastes more compute than it
saves. Similarly, out depth operator saves 21.8% while that
of of Gong et al. (2019) saves 9.6% because it is not loss
preserving (starts at a higher loss and wastes compute to
recover).

Prior work also mostly ignored the optimizer state. In Fig-
ure 3, we explore this as an ablation by simply setting the
optimizer state to zero for our width and depth growth op-
erators. Though the loss can be retained at the starting
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Zero-shot Wikitext-103 (PPL) Zero-shot LAMBADA (accuracy)

GPT2LARGE GPT2BASE GPT2LARGE GPT2BASE

5k 10k 14k 3.75k 7k 11k 5k 10k 14k 3.75k 7k 11k

Baseline 41.0 32.3 30.3 68.5 57.1 50.0 39.6 43.2 44.7 31.1 33.0 34.7

Compute savings (percent saved vs. baseline, negative means more compute than baseline)

1 stage manual
2xwidth -18.5 6.2 5.8 -19.7 0.3 2.4 3.2 6.7 8.3 -8.3 0.2 13.6
2xdepth 28.5 11.8 12.0 24.0 28.0 17.3 33.5 16.8 13.8 24.0 22.9 18.2

1 stage practical

2xwidth -20.5 -0.25 8.7 -15.7 5.9 3.8 -15.5 12.3 14.8 -15.7 3.3 10.6
4xwidth -13.4 1.3 7.4 -12.0 1.1 6.4 -11.0 18.0 18.2 -12.0 10.1 8.6
2xdepth 32.0 13.5 11.4 31.3 33.5 17.5 32.0 23.5 21.4 24.7 16.8 13.9
4xdepth 21.0 17.5 9.5 14.6 7.9 3.1 21.0 20.5 14.6 14.6 9.4 7.8
2xdepthxwidth -10.5 -0.3 1.6 -12.0 3.6 4.5 -95.0 -37.5 0.7 5.4 6.4 6.4

2 stage practical
2x2xwidth -2.5 6.3 9.3 3.3 5.4 8.0 -3.3 13.4 20.3 -3.3 1.8 11.8
2x2xdepth 30.0 12.5 12.8 33.3 14.3 11.8 19.0 14.5 23.6 19.9 10.6 15.0

Table 2: Percentage compute savings for GPT2LARGE and GPT2BASE on out-of-domain Wikitext-103 (perplexity) and LAM-
BADA (accuracy). Percent savings is how much less compute our approach takes than the baseline to to train a model to
equal or better perplexity or accuracy than the baseline; negative numbers mean our approach took more compute than the
baseline to achieve equal or better performance. Results are mixed in the early stages of training, but our approach leads
to compute savings for all experiments later in training (14k for large, 11k for base). The derivative threshold at 5k steps
is -0.1, at 10k steps it’s -0.05, and at 14k steps it’s -0.04; thus, 5k is undertrained, 10k is approximately at the optimality
threshold of -0.052, and 14k is trained beyond optimality. Similar for GPT2BASE.

pointing for the grown model, the training dynamic be-
comes extreme unstable after applying the growth oper-
ators, and thus such a growth operator will not have the
training-dynamics-preserving property.

Ablation studies We further perform two ablation stud-
ies concerning the learning rate schedule and growth sched-
ule in Figure 3. For the learning rate schedule, we compare
our setting of the learning rate to the GROWTH-TARGET
point with restarting the learning rate schedule as in Rae
et al. (2021). Figure 3c shows that resetting the learning
rate schedule leads to much unstable training dynamics that
are not aligned with the GROWTH-TARGET. Additionally,
Figure 3d shows that it wastes more compute than it saves
(red curve intersects blue).

For the growth schedule, we experiment with growing the
small model earlier or later than the GROWTH-TARGET
point computed with our proposed practical schedule. Fig-
ure 3d shows that growing the model too late/early is still
loss-preserving and training-dynamics-preserving but the
grown models lose the compute saving advantages (brown
and purple curves are higher than green).

Training to completion vs. to OPTIMALITY. While
training to OPTIMALITY is not one of our contributions,
it is an important part of our training schedule. Here we
compare our models in Table 2 with equivalent models

trained to completion5. In Radford et al. (2019) , GPT2BASE

trained to completion achieves 37.5 PPL on Wikitext-103
and 45.9 accuracy on LAMBADA. Our best-performing
2x2xdepth grown GPT2LARGE model achieves the same PPL
on Wikitext-103 as this model with only 15% of the com-
pute and the same accuracy as the this model on LAM-
BADA with 33% of the compute. Notice that we are com-
paring different model sizes, a large model trained to OP-
TIMALITY vs. a smaller model trained to completion.

7. Related Work
Perhaps the most similar prior work is (Gu et al., 2021).
However, this work did not provide a method to decide
when to apply a growth operator and instead evaluated the
performance of their operators at 100/300/500/700K steps
of a small model, or applied a heuristic to equally distribute
training steps among different model sizes. They did not
discuss the optimizer state, and they reset the learning rate
to the maximum value of 1e-4 at the beginning of each state
without warmup. Their work built on progressive stacking
(discussed below), and their proposed method to grow the
width only grew the feed-forward layers instead of the en-
tire model width.

5Models are equivalent but the training data is not the same,
which might confound the results. That said, the GPT2 training
corpus is of similar or higher quality than C4 (that we use), so the
compute saving of our experiment to train to optimality is unlikely
to be because of differences in training data.
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(b) Depth op. and optimizer
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(c) LR and optimal schedule
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Figure 3: Comparing with three different baselines from prior work and ablation studies. • The width growth operator
of Gu et al. (2021) in GPT2BASE/4x4width ffn and the depth growth operator of Gong et al. (2019) in GPT2BASE/2x2depth copy
are not loss preserving (higher initial loss). Also, GPT2BASE/4x4width ffn is significantly underperforming the target model
GPT2BASE. • Resetting the optimizer state to zero instead of growing it (the zero opt runs) have large instabilities and
not preserving of the training dynamics. • 3c shows that restarting the learning rate schedule as in Rae et al. (2021) is not
training-dynamics-preserving. • 3c, 3d also show that not following our optimal schedule and grow the model too early or
too late is still loss-preserving and training-dynamics-preserving but leads to lower compute saving.

(Gong et al., 2019) proposed “progressive stacking” which
doubles the depth of a BERT transformer model by copy-
ing layers; to construct a 2L-layer model from a L layer
model it copies layer i ≤ L in the smaller model to layer
(i + L) in the larger model. The optimizer state is reset at
the beginning of each stage, but the learning rate is kept the
same as the prior stage. They use heuristics to set the stack-
ing schedule: 50K steps for 3-layer, 70K steps for 6-layer
model, 280K steps for 12-layer model. In an ablation study
they examined the sensitivity to the number of steps before
applying their growth operator and concluded that there is a
threshold number of steps and for switching times such that
switching to the larger model before the threshold led to
compute savings, but switching after the threshold didn’t.
This is consistent with our results that showed the amount
of compute saving is closely related to the stage length.

(Li et al., 2020a) proposed growing encoder-decoder trans-
formers in the context of training a machine translation sys-
tem. Their depth growth operator is identical to progressive
stacking, although they explore operations that increase the
model by only copying some of the layers from the small
to large model (e.g. growing from 12 to 18 layers). They
do not mention optimizer state, and reset the learning rate
to max value at each stage.

In contemporaneous work, Gopher (Rae et al., 2021) and
Chinchilla (Hoffmann et al., 2022) introduced a method
which tiles the weights from a small model to a larger
one. However, their growth operator does not satisfy our
two properties from Section 2, and they focus on training
their models to completion. Evci et al. (2022) proposes
a way to initialize the grown weights by maximizing the
gradient norm of the new weights for vision models. Their
growth operator also requires specified activation functions

that can not be directly applied to transformers. Finally, Li
et al. (2021) proposed applying a curriculum learning strat-
egy to the sequence length to reduce the training cost when
training large language models. Their work is orthogonal to
our method and our methods could be combined; we leave
this to future work.

8. Conclusion and future work
One direction of future work is to combine batch
size warmup (Brown et al., 2020) and sequence length
growth (Li et al., 2021) with our depth and width growth
operators. Another applies our proposed methods to train a
massive transformer.

We presented a staged training method for large
transformer-based language models that grows the model
size during training. We demonstrated the importance of
two properties of the growth operators (loss-preserving
and training-dynamics-preserving), and provided depth and
width operators that satisfy both requirements. Finally, we
devised a principled method that connects LM scaling laws
(Kaplan et al., 2020) and our two properties to find a prov-
ably optimal time (during training) to grow the model, and
how to sufficiently re-estimate the necessary components
of the scaling laws in practice leading to the maximum
compute saving. Empirical evaluations show up to 22%
compute saving.

References
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,

J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,



Staged Training for Transformer Language Models

J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin,
M., Gray, S., Chess, B., Clark, J., Berner, C., McCan-
dlish, S., Radford, A., Sutskever, I., and Amodei, D.
Language models are few-shot learners. In Neural In-
formation Processing Systems (NeurIPS), 2020.

Chen, T., Goodfellow, I., and Shlens, J. Net2net: Acceler-
ating learning via knowledge transfer. In International
Conference on Learning Representations, 2016.

Evci, U., Vladymyrov, M., Unterthiner, T., van
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(b) Depth growth with GPT2LARGE as target

Figure 4: Similar to Figure 2, our width and depth growth operators are loss-preserving and training dynamics preserving.
• GPT2LARGE/16x16-WIDTH indicates starting from a 16x smaller model then growing it 16x by doubling the width twice.
• GPT2LARGE/16x4x4-WIDTH indicates growing the model 16x over two stages, by doubling the width once, continue training
the model, then doubling the width again. • The same applies to the depth growth operator.

A. Additional Plots and Results
In Figure 4 and 5, we show loss curve plot and compute plot for applying growth operator to GPT2BASE model. These
suggest our growth operator is loss-preserving, training dynamic preserving and saves compute to train the target BASE
size model.

In Figure 6, we demonstrate the loss curve and derivatives regarding the validation loss and compute in log scale. It clearly
shows the used practical threshold gives us a good estimate of the OPTIMALITY of the loss curve. The first derivative is
found empirically using the slope of the learning curve at each point.

In Figure 7, we present the evaluation results for every checkpoints across the steps for target and grown GPT2BASE model.
The performance of the GPT2BASE/2x2depth can always perform on par with or better than the baseline while GPT2BASE/4x4width
underperforms baseline in the initial phase after growing but can catch up quickly. This also explains the potential negative
compute we have in the main text in the early phase of the evaluation and better compute saving at OPTIMALITY.

B. Model Architecture
We use GPT2BASE and GPT2LARGE models. For GPT2BASE model, it consists of 12 layers, 768 hidden dimensions, 12
heads and 125M parameters. For GPT2LARGE model, it consists of 24 layers, 1536 hidden dimensions, 16 heads and 760M
parameters.

C. Optimal Stage Schedule
This appendix defines a constrained optimization problem that produces the optimal staged-training schedule. The scaling
laws of Kaplan et al. (2020) derived empirical fits for the language model loss L as it relates to the total amount of compute
C, number of non-embedding parameters N , number of gradient update steps S, and batch size B. The total compute6 is
given by

C ≈ 6NBS, (10)

and the loss L for any model size N and number of steps S is given by:

L(N,S) =

(
Nc
N

)αN
+

(
Sc
S

)αS
(11)

6This neglects contributions proportional to the context length, nctx, and may not be valid in regime of large nctx where nctx ≥
12dmodel
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(c) Depth growth with GPT2LARGE as target

10 3 10 2

Flops (PF-days)
3 × 100

4 × 100

5 × 100

6 × 100

Va
lid

 L
M

 L
os

s (
lo

g)

GPT2base

GPT2base/2 depth
GPT2base/4 depth
GPT2base/2x2 depth
GPT2base/4x4 depth
Growth

(d) Depth growth with GPT2BASE as target

Figure 5: Growth operator and total compute. Our grown models are saving compute compared with target model.

when training at the critical batch size Bcrit = B∗
L1/αB

, and where αN , αS , αB , Nc, Sc, B∗ are all model-specific constants.

Our goal is to minimize the total compute to train a model of a given sizeNtarget to a given target loss Ltarget. We assume
we have access to perfect growth operators that are loss-preserving and training dynamics-preserving, and that can grow
from any model size to any other size7. We consider a training regime consisting of a number of stages. In each stage k we
train a model with size Nk for Sk gradient steps, with the goal of reaching size Ntarget and achieving a target loss Ltarget
at the end of the final stage. We assume that Nk ≥ Nk−1, and that there exists some way to initialize the model with size
Nk from one of size Nk−1 without changing the loss. For simplicity, we neglect the batch size contribution to compute,
and assume training is always at the critical batch size B∗/L

1/αB
target.

With these assumptions the total compute at the end of training for M stages is:

C =

M∑
k=1

6Nk
B∗

L
1/αB
target

Sk (12)

We can compute the loss at the end of each stage in an iterative fashion. The loss at the end of the first stage is given by
L1(N1, S1) from Eqn. 11. Then for each subsequent stage, we assume the loss curves can be translated and the loss at the
end of stage k is computed by starting with the loss at the end of the prior stage and decreased for Sk steps. To do so, first
compute the effective number of steps Seff,k needed to reach initial loss for the stage Lk−1 with model size Nk, and then

7We can restrict the model size increases by adding additional constraints.
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(a) First derivative on the validation loss curve for GPT2BASE and GPT2LARGE. This is an
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(b) Validation loss curve for GPT2BASE and GPT2LARGE

Figure 6: 6a shows the first derivative of the validation loss curve for GPT2BASE and GPT2LARGE. The horizontal dotted
lines shows the empirical value of the derivative threshold we use to identify the point of OPTIMALITY. 6b shows how the
threshold value in 6a maps to a point in the loss curve for both model sizes (the first vertical line for GPT2BASE and the
second for GPT2LARGE). Both point show slowed training and the end of the compute-efficient regime.

compute the loss at the end of the stage by Lk(Nk, Seff,k + Sk). In summary:

L1 =

(
Nc
N1

)αN
+

(
Sc
S1

)αS
Lk =

(
Nc
Nk

)αN
+

(
Sc

Seff,k + Sk

)αS
, k > 1

Seff,k =
Sc

(Lk−1 − (Nc/Nk)αN )1/αS
.

With this in hand, we can use a constrained optimizer to solve for the optimal schedule by minimizing Eqn. 12, subject to
the constraint that the final model size is the target size, and loss at the end of training is the target loss. Formally,

min
{(Nk,Sk)}

M∑
k=1

6Nk
B∗

L
1/αB
target

Sk
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(a) Wikitext-103 evaluation with GPT2BASE as target
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(b) LAMBADA evaluation with GPT2BASE as target.

Figure 7: The detailed evaluation plots on Wikitext-103 and LAMBADA for GPT2BASE trained from scratch and two grown
model using depth or width operator. The performance of the GPT2BASE/2x2depth perfectly follows or even outperform the
target model, while GPT2BASE/4x4width underperforms the target model initially after growing but it catches up quickly. This
explains the initial “negative” compute saving in Table 2 for the width growth operator, followed by positive compute
saving as the model trains longer.

Number of stages Compute reduction factor

1 1.0
2 0.83
3 0.792
4 0.779
5 0.771
10 0.763

Table 3: Decrease in compute costs over an optimal single stage training regime.

subject to

LM = Ltarget

NM = Ntarget

0 < N1

Nk−1 ≤ Nk, k > 1

0 ≤ Sk

Note that in the single stage case (M = 1) with no Ntarget condition, this formulation reduces to the optimal calculation
in Appendix C of Kaplan et al. (2020) to find the optimal model size to reach a target loss. This matches our training to
OPTIMALITY.

Measuring compute saving To measure the compute saving from staged training to reach a certain Ltarget, we use a
single staged training (M = 1) with no Ntarget condition, and use our optimization algorithm to find the optimal compute
and model size; this becomes Ntarget. Next, we run the optimization problem with Ntarget, Ltarget, and M > 1 to get the
optimal training schedule and the expected compute, which we compare with M = 1 to find the expected compute saving.

Observations An implementation of this optimization shows that the increase in compute efficiency for using multiple
stages is independent of the target loss Ltarget, and quickly approaches 0.76 as the number of stages increases (using the
scaling parameters for autoregressive transformer language models).

We also found that constraining the ratio between consecutive model sizes ( Nk
Nk−1

) to be 2, 4 or 8, leads to almost the same
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Stage Nk Sk Lk Ck

1 2.7M 15.4K 4.09 0.0033
2 22.1M 24.3K 3.58 0.0154
3 71.9M 30.8K 3.31 0.0365
4 163M 36.0K 3.13 0.0665
5 306M 40.5K 3.00 0.1056

Table 4: Sample optimal schedule for a five stage regime to train to Ltarget = 3 showing the number of non-embedding
parameters Nk, the number of gradient steps Sk, the loss at the end of the stage Lk, and the compute in the stage Ck.

compute savings. These constraints come from the practical constraints of our implementation of the growth operators.

D. Practical Stage Schedule
The empirical values we estimated for the constants are:

τopt = −0.052
τdepth = −0.0575
τwidth = −0.0475

τdepth−width = −0.03
ρdepth = 0.70

ρwidth = 0.55

ρdepth−width = 0.40
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